Тангенциальное ускорение

Что такое тангенциальное ускорение?

Тангенциальное ускорение рассмотрим на простом примере.

Пример тангенциального ускорения

Пусть скорость движения тела изменяется только по величине, а само движение является равнопеременным.

При равнопеременном движении модуль скорости изменяется на на одинаковую величину за равные промежутки времени.

График изменения скорости при равнопеременном движении: Тангенциальное ускорение

(Этот график я построил с помощью построителя графиков. Выбрал в нём вид функции "Линейная: y = k * x + b" и нажал кнопку "Построить график".)

Рассмотрим изменение скорости при изменении времени от 2-х до 5-ти секунд.

Время изменилось на "дельта t", а скорость изменилась на "дельта V": Тангенциальное ускорение

Отношение "дельта V" к "дельта t" даёт тангенциальное ускорение: Тангенциальное ускорение

Из этого уравнения ясно, что тангенциальное ускорение является вектором. Кстати, а почему ясно, что это вектор? Потому, что умножение вектора на число даёт вектор. Это свойство векторов. В правой части уравнения вектор "дельта V" умножается на число один разделить на "дельта t". Значит, то чему равна правая часть уравнения есть вектор. А правая часть у нас равна тангенциальному ускорению, что следует из уравнения. Делаем вывод: тангенциальное ускорение является вектором.

Направление вектора тангенциального ускорения

Направлено тангенциальное ускорение по одной прямой с вектором скорости. Но в какую сторону?

Если скорость увеличивается, то вектор тангенциального ускорения направлен в ту сторону, что и вектор скорости и модуль тангенциального ускорения есть положительное число.

Если скорость уменьшается, то вектор тангенциального ускорения направлен в сторону, противоположную вектору скорости и модуль тангенциального ускорения есть отрицательное число.

Модуль и знак тангенциального ускорения

Модуль и знак тангенциального ускорения найдём из уравнения: Тангенциальное ускорение

Для случая криволинейного движения вектор тангенциального ускорения направлен по касательной к траектории.

В примере этой статьи мы рассматривали равнопеременное движение.

Для более сложных случаев, когда скорость изменяется неравномерно, следует график V от t разбить на участки, для которых график можно заменить прямой линией. И все наши рассуждения применить к такому участку. В этом случае для каждого участка будет своё тангенциальное ускорение.